从系统架构来看,目前的商用服务器大体可以分为三类,即对称多处理器结构 (SMP : Symmetric Multi-Processor) ,非一致存储访问结构 (NUMA : Non-Uniform Memory Access) ,以及海量并行处理结构 (MPP : Massive Parallel Processing) 。它们的特征分别描述如下:
SMP(Symmetric Multi-Processor)
所谓对称多处理器结构,是指服务器中多个 CPU 对称工作,无主次或从属关系。各 CPU 共享相同的物理内存,每个 CPU 访问内存中的任何地址所需时间是相同的,因此 SMP 也被称为一致存储器访问结构 (UMA : Uniform Memory Access) 。对 SMP 服务器进行扩展的方式包括增加内存、使用更快的 CPU 、增加 CPU 、扩充 I/O( 槽口数与总线数 ) 以及添加更多的外部设备 ( 通常是磁盘存储 ) 。
SMP 服务器的主要特征是共享,系统中所有资源 (CPU 、内存、 I/O 等 ) 都是共享的。也正是由于这种特征,导致了 SMP 服务器的主要问题,那就是它的扩展能力非常有限。对于 SMP 服务器而言,每一个共享的环节都可能造成 SMP 服务器扩展时的瓶颈,而最受限制的则是内存。由于每个 CPU 必须通过相同的内存总线访问相同的内存资源,因此随着 CPU 数量的增加,内存访问冲突将迅速增加,最终会造成 CPU 资源的浪费,使 CPU 性能的有效性大大降低。实验证明, SMP 服务器 CPU 利用率最好的情况是 2 至 4 个 CPU 。
NUMA(Non-Uniform Memory Access)
由于 SMP 在扩展能力上的限制,人们开始探究如何进行有效地扩展从而构建大型系统的技术, NUMA 就是这种努力下的结果之一。利用 NUMA 技术,可以把几十个 CPU( 甚至上百个 CPU) 组合在一个服务器内。
其 CPU 模块结构如图 2 所示:
NUMA 服务器的基本特征是具有多个 CPU 模块,每个 CPU 模块由多个 CPU( 如 4 个 ) 组成,并且具有独立的本地内存、 I/O 槽口等。由于其节点之间可以通过互联模块 ( 如称为 Crossbar Switch) 进行连接和信息交互,因此每个 CPU 可以访问整个系统的内存 ( 这是 NUMA 系统与 MPP 系统的重要差别 ) 。显然,访问本地内存的速度将远远高于访问远程内存 ( 系统内其它节点的内存 ) 的速度,这也是非一致存储访问 NUMA 的由来。由于此设计特点,为了更好地发挥系统性能,开发应用程序时需要尽量减少不同 CPU 模块之间的信息交互。
利用 NUMA 技术,可以较好地解决原来 SMP 系统的扩展问题,在一个物理服务器内可以支持上百个 CPU 。比较典型的 NUMA 服务器的例子包括 HP 的 Superdome 、 SUN15K 、 IBMp690 等。
但 NUMA 技术同样有一定缺陷,由于访问远程内存的延时远远超过本地内存,因此当 CPU 数量增加时,系统性能无法线性增加。如 HP 公司发布 Superdome 服务器时,曾公布了它与 HP 其它 UNIX 服务器的相对性能值,结果发现,64 路CPU的 Superdome (NUMA 结构 ) 的相对性能值是 20 ,而 8 路 N4000( 共享的 SMP 结构 ) 的相对性能值是 6.3 。
从这个结果可以看到, 8 倍数量的 CPU 换来的只是 3 倍性能的提升。
MPP(Massive Parallel Processing)
与NUMA 不同,MPP 提供了另外一种进行系统扩展的方式,它由多个 SMP 服务器通过一定的节点互联网络进行连接,协同工作,完成相同的任务,从用户的角度来看是一个服务器系统。其基本特征是由多个 SMP 服务器 ( 每个 SMP 服务器称节点 ) 通过节点互联网络连接而成,每个节点只访问自己的本地资源 ( 内存、存储等 ) ,是一种完全无共享 (Share Nothing) 结构,因而扩展能力最好,理论上其扩展无限制,目前的技术可实现 512 个节点互联,数千个 CPU 。目前业界对节点互联网络暂无标准,如 NCR 的 Bynet , IBM 的 SPSwitch ,它们都采用了不同的内部实现机制。但节点互联网仅供 MPP 服务器内部使用,对用户而言是透明的。
在 MPP 系统中,每个 SMP 节点也可以运行自己的操作系统、数据库等。但和 NUMA 不同的是,它不存在远程内存访问的问题。换言之,每个节点内的 CPU 不能访问另一个节点的内存。节点之间的信息交互是通过节点互联网络实现的,这个过程一般称为数据重分配 (Data Redistribution) 。
但是 MPP 服务器需要一种复杂的机制来调度和平衡各个节点的负载和并行处理过程。目前一些基于 MPP 技术的服务器往往通过系统级软件 ( 如数据库 ) 来屏蔽这种复杂性。举例来说, NCR 的 Teradata 就是基于 MPP 技术的一个关系数据库软件,基于此数据库来开发应用时,不管后台服务器由多少个节点组成,开发人员所面对的都是同一个数据库系统,而不需要考虑如何调度其中某几个节点的负载。
NUMA 与 MPP 的区别
从架构来看, NUMA 与 MPP 具有许多相似之处:它们都由多个节点组成,每个节点都具有自己的 CPU 、内存、 I/O ,节点之间都可以通过节点互联机制进行信息交互。那么它们的区别在哪里?通过分析下面 NUMA 和 MPP 服务器的内部架构和工作原理不难发现其差异所在。
首先是节点互联机制不同, NUMA 的节点互联机制是在同一个物理服务器内部实现的,当某个 CPU 需要进行远程内存访问时,它必须等待,这也是 NUMA 服务器无法实现 CPU 增加时性能线性扩展的主要原因。而 MPP 的节点互联机制是在不同的 SMP 服务器外部通过 I/O 实现的,每个节点只访问本地内存和存储,节点之间的信息交互与节点本身的处理是并行进行的。因此 MPP 在增加节点时性能基本上可以实现线性扩展。
其次是内存访问机制不同。在 NUMA 服务器内部,任何一个 CPU 可以访问整个系统的内存,但远程访问的性能远远低于本地内存访问,因此在开发应用程序时应该尽量避免远程内存访问。在 MPP 服务器中,每个节点只访问本地内存,不存在远程内存访问的问题。
All comments